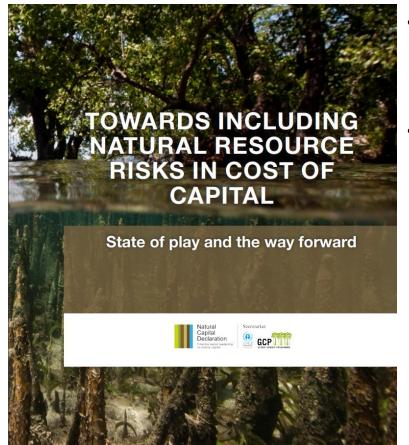


Developing an evidence base for assessing natural capital risks and dependencies in lending to Australian wheat farms

Theodor F. Cojoianu^a & Francisco Ascui^b

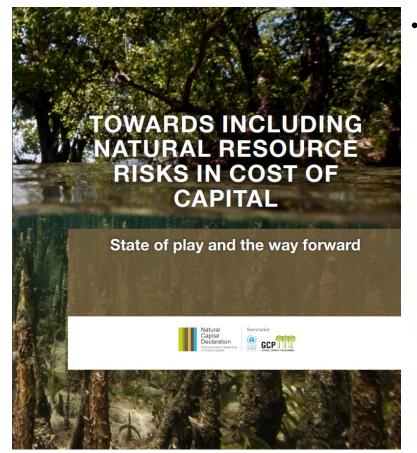
PRI in Person Academic Conference 27th of September 2017

^a Smith School of Enterprise and the Environment, University of Oxford.
<u>theodor.cojoianu@ouce.ox.ac.uk</u>
^b University of Edinburgh & University of Tasmania, <u>francisco.ascui@gmail.com</u>

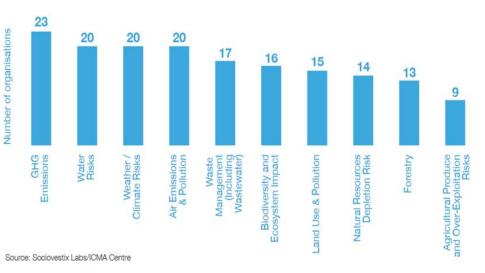

Agenda

- 1. Challenges of environmental risk integration in lending
- 2. The Australian wheat farming sector
- 3. Quantifying natural capital risk in lending to Australian agriculture
- 4. The hard thing about the hard things reflection on challenges and further research

Challenges of environmental risk integration in lending

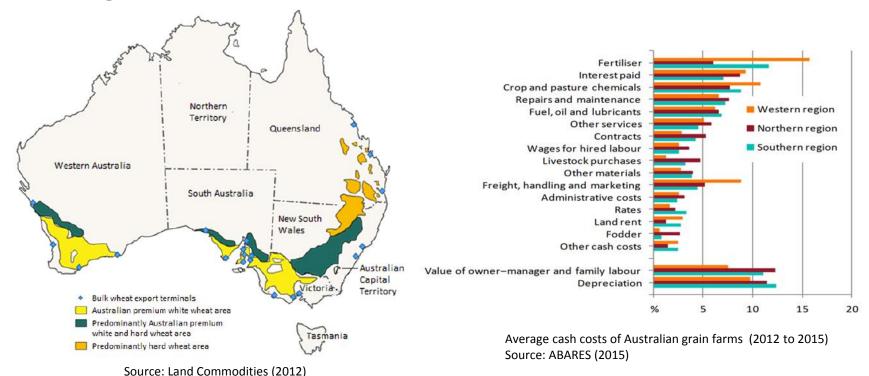

Natural Capital Finance Alliance (2015) -Cojoianu, Hoepner, Rajagopalan & Borth

- Surveyed 36 large financial institutions regarding the use of environmental datasets in lending decision making.
- Beyond carbon and water risks, no financial institution had the capability to systematically analyse broader environmental risks. The reasons for this include:
 - Limited IT budgets and personnel
 - Lack of awareness around environmental issues
 - Lack of access to robust environmental information and data
 - Complexity of environmental risks
 - Difficulty in linking long term environmental risks to short-term business decisions



Challenges of environmental risk integration in lending

Analysed 66 ESG research providers on their capability to provide environmental risk research to financial institutions. Only 26 of these had some methodological or data capability across different environmental indicators.



Natural Capital Finance Alliance (2015) -Cojoianu, Hoepner, Rajagopalan & Borth

Developing a natural capital risk evidence base for lending to Australian wheat farms

Top Level Risk	Sub-Level Risk Factor	Sub-Level Physical Risk		
	Annual Rainfall	Annual Average Rainfall		
	Growing Socon Paintall	Growing Season Rainfall Amount		
		Growing Season Rainfall Variability		
Water	Excessive Rainfall	Excessive Rainfall in Early Growing Season		
		Excessive Rainfall in Harvesting Season		
	Water Use Efficiency	Average 3 Year Water Use Efficiency - Peer Benchmarking		
	Water Use Efficiency	Farm % of Maximum Yield per Water Unit Used		
Frost Damage and Heat	Frost Damage	Frost Days		
Stress	Heat Stress	High Degree Hours		
Extreme Weather Events	Bushfires, hailstorms, cyclones and floods	Incidents in the past 10 years		
	1 Soll Aciditication	pH Topsoil		
		pH Subsoil		
Soil Health		Average SOC in Topsoil		
		Average 3 Year Soil Salinity		
	Surface Water Erosion	Ground Cover Percentage		
Fertiliser Use	Fertiliser Quantity and Cost	Peer Benchmarking 3 Year Average Fertiliser Use		
		Percentage of Farm Cost Structure of Fertiliser Input		
	Fortilisor	Partial Nutrient Balance		
		Farm Partial Factor Productivity		
	Fertiliser Run-Off	Water Contamination Incidents (Past 5 Years)		
Pests, Diseases and Weeds	Pests	Average 3 Year Economic Cost to the Farm		
	Diseases	Average 3 Year Economic Cost to the Farm		
	Weeds	Average 3 Year Economic Cost to the Farm		
Biodiversity	Biodiversity Risk	Farm Level Biodiversity Risk		
	Energy Use	Total On-Farm Energy Consumption (MJ/t)		
		Percentage of Farm Cost Structure of Energy Consumption		
Energy and GHG Emissions	GHG Emissions	Farm Normalised GHG Emissions		
		Stress Test \$15/tCO2-e		
		Stress Test \$30/tCO2-e		

Fertiliser Use Risk Example

Risk Factor	Timeframe	Scale	Information Need	Data Sources	
			Fertiliser quantity (absolute or kg/ha) and percentage of total annual farm cash costs.		
Fertiliser quantity and cost	Short term	Farm	Farmer's ability to balance fertiliser purchasing decisions with weather dependent fertiliser requirements	Farmer questionnaire	
	Long term	National	Predicted fertiliser price trends	Market analysts	
Fertiliser production and transport energy use and GHG emissions	Short and long term	National	Energy and GHG emissions per kg fertiliser	Life-cycle assessment studies, fertiliser manufacturer disclosure and/or farmer questionnaire	
Appropriate	Short term	Farm	Farmer's ability to optimise fertiliser application	Farmer and peer questionnaire (peer with similar rainfall profile)	
application of fertiliser	Long term	Farm	Impact of fertiliser application on soil quality (e.g. monitoring	Soil samples (for nutrient removal rate); farmer	$PNB = \frac{kg \text{ nutrient removed}}{kg \text{ nutrient supplied}}$
		Partial Nutrient Balance)	questionnaire (for fertiliser applied)	ratio > 1 indicates	
Fertiliser run-off	Short and long term	Farm and surrounding area	Adjacent water and soil contamination from fertiliser run-off	Farmer questionnaire; environmental regulator data	soil is mined for short term productivity at the expense of long – term degradation

Remarks on and challenges in quantifying material environmental risks

- There are numerous challenges in trying to answer the simple question "is this loan an acceptable risk?" and the complexity, uncertainty and heterogeneity of the reality on the ground.
- Natural processes are often characterised by complexity and interconnectedness. While it is relatively easy to identify high-level natural capital risk categories, we discovered that most of these are in fact multi-dimensional.
- Some risks are less challenging to evaluate than others. For example, energy use and GHG emissions are relatively easy to monitor and to price with a shadow cost of carbon. Soil health risk factors are at the other end of the spectrum, being highly complex and interconnected.
- Many sources of useful quantitative data to assess natural capital risk factors exist at least in a developed country such as Australia but qualitative data will almost always also be required to obtain a view of how able the borrower is to manage a particular risk.

Thank you for your attention!

