Impacts of the Inevitable Policy Response across asset classes
1. Results for remaining (non-public equity) asset classes
 a) Corporate bonds
 b) Sovereign bonds
 c) Real estate
 d) Owner specific assets (Private equity and infrastructure)

2. Strategic Asset Allocation implications
Consortium

This report was prepared by Vivid Economics and Energy Transition Advisors, who bear sole responsibility for any views expressed, which do not necessarily reflect those of the sponsors or other consortium members. The authors are solely responsible for any errors.

This project was commissioned by the PRI with support from:
Corporate bond results (Vivid Economics)
Key Findings: Corporate debt impacts are modest as most issued bonds mature before the FPS kicks in, which presents a realignment opportunity for investors

Overall impacts for corporate debt are modest with the bonds currently issued by companies in the iShares MSCI ACWI falling only 0.03% in value under FPS.

This is significantly less than the 3.1% impact on the iShares MSCI ACWI equity index.

The median time to maturity of bonds issued by iShares MSCI ACWI companies is 5 years and most of current exposures are therefore paid out before the FPS comes in post 2025.

However, value impacts increase with maturity so longer dated bonds are exposed.

As with equities, there is within and across sector variation for corporate bonds.

However, impacts and hence across sector variation is muted due to the relatively secured gradual payout structure of bonds.

High rated bonds have modest impacts under the FPS as policy is unlikely to tip them into bankruptcy.

However, low rated bonds can be very exposed to the FPS as policy can push them into insolvency.

Current holdings
Investors should conduct additional due diligence on longer dated and low rated bonds to assess their climate exposure.

Future bond issuance
Investors should gradually reduce their exposure to “dirty” sectors and companies by not buying their newly issued bonds.
Changes in cash flows impact default risk, as companies' ability to service their debt changes. FPS decarbonization policies impact company performance as outlined in the equities analysis. Effects vary across companies depending on characteristics such as sectors.

Changes in default risk are translated into adjusted bond prices, using standard fixed income security valuation techniques. Impacts differ depending on current credit ratings (default probabilities) and duration (time to maturity and payout structure).
Impacts of the Inevitable Policy Response

Overall impacts are modest relative to equities as most issued bonds pay out before impacts kick in – the majority of analysed bonds have a maturity under 5 years.

-31%

-0.03%

Issued corporate bonds*

This is largely because 58% of bonds issued by MSCI ACWI companies have a maturity of less than 5 years.

*Equity is based on the iShares MSCI ACWI ETF, Issued corporate bonds** represents bonds issued by companies within the iShares MSCI ACWI ETF.

Source: Vivid Economics (Net-zero toolkit)
Impacts of the Inevitable Policy Response

Issued corporate bonds* represents bonds issued by companies within the iShares MSCI ACWI ETF

Source: Vivid Economics (Net-Zero Toolkit)

Impacts are small across sectors, as short maturities prevail across all major sectors

<table>
<thead>
<tr>
<th>RBICS Level 1 sectors</th>
<th>Share of index</th>
<th>Median Maturity</th>
<th>Change in valuation under FPS (weighted mean impacts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>5%</td>
<td>8</td>
<td>0.0%</td>
</tr>
<tr>
<td>Industrials</td>
<td>16%</td>
<td>5</td>
<td>0.0%</td>
</tr>
<tr>
<td>Technology</td>
<td>7%</td>
<td>4</td>
<td>0.0%</td>
</tr>
<tr>
<td>Finance</td>
<td>29%</td>
<td>4</td>
<td>0.0%</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>10%</td>
<td>4</td>
<td>0.0%</td>
</tr>
<tr>
<td>Healthcare</td>
<td>3%</td>
<td>5</td>
<td>0.0%</td>
</tr>
<tr>
<td>Consumer Cyclicals</td>
<td>6%</td>
<td>5</td>
<td>0.0%</td>
</tr>
<tr>
<td>Consumer Non-Cyclicals</td>
<td>100%</td>
<td>5</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Business Services</td>
<td>0%</td>
<td>4</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Consumer Services</td>
<td>1%</td>
<td>5</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Consumer Cyclicals</td>
<td>10%</td>
<td>2</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Non-Energy Materials</td>
<td>8%</td>
<td>5</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Energy</td>
<td>4%</td>
<td>6</td>
<td>-0.3%</td>
</tr>
</tbody>
</table>

*issued corporate bonds
Impacts of the Inevitable Policy Response

However, as with equities, within-sector variation can be significant, particularly for: energy, non-energy Materials and utilities

Notes: Error bars indicate the 10th and 90th percentiles of impact within each sector. Sectors: RBICS level 1.
Issued corporate bonds* represents bonds issued by companies within the iShares MSCI ACWI ETF
Source: Vivid Economics (Net-Zero Toolkit)
Beyond company fundamental, discussed in the equities release, variation in impacts can be explained by differences credit ratings and maturities.*

*Due to the lack of availability of long dated corporate bonds >10y the impacts on 30y debt is assessed through “hypothetical” bonds. Overall market oh corporate bonds >10y is very small.

Source: Vivid Economics (Net-Zero Toolkit)
Although current bond portfolios face small risks, low rated bonds in exposed sectors, can be very exposed and extra due diligence is thus needed around new issuance.
Sovereign debt results (Vivid Economics)
Sovereign bonds rally for most countries under the FPS as increases in credit risk are dominated by lower interest rates. For example, an average tenor US bond* is expected to increase in price by 0.01% under the FPS.

Bonds with longer maturity experience larger price changes as coupon payments occur further into the FPS.

Central bank response is critical. Value adjustments depend heavily on how central banks respond to the FPS and investors should monitor how this develops.

Interest rates fall as central banks respond to a growing output gap driven by the FPS.

Inflation rise but the decrease in real interest rates dominates.

Increasing debt issuance drives up debt/GDP ratios and therefore credit risk premia. In most cases the fall in nominal risk-free interest rates dominates causing bond yields to fall except for countries already running large debt/GDP, for example, Canada.

Reduce exposure to some countries. Investors should reduce exposure to longer dated bonds issued by fossil fuel exporting countries with high debt/GDP ratios.

The analysis done on sovereign bond issuance assumes locally issued debt.

*Average tenor US bond is 6 years to maturity.
Macroeconomic modelling for the IPR FPS was conducted using G-Cubed, a multi-country, multi-sector intertemporal general equilibrium model of the global economy.

Impacts of the Inevitable Policy Response

Macroeconomic shocks and policy responses change nominal interest rates and credit risk premia which lead to a repricing of sovereign bonds.

Policy makers respond to macroeconomic shocks:

- **central banks adjust interest rates** based on the trade-off between growth and inflation
- **governments** change fiscal policies and might therefore **take on more debt**

Again, responses differ depending on national characteristics such as exchange rate regime.

FPS decarbonisation policies tend to:

- **increase inflation** as carbon costs drive up consumer prices
- **reduce GDP** relative to BAU as investment and consumption fall

Effects vary across countries depending on national characteristics such as sector split.

Markets reprice sovereign bonds as:

- **credit risk premia change** as governments take on more debt
- **nominal interest rates change** as inflation and monetary policy adjust

Repricing differ depending on duration and starting point.
United States 30-year bond prices increase significantly due to expectations of lower future real interest rates

USD 30-year sovereign bond

Nominal interest rates determined by central bank response

- Real interest rate
- Inflation
- Total impact

- Change in valuation under FPS:
 - 0%
 - 1%
 - 2%
 - 3%
 - 4%
 - 5%
 - 6%
 - 7%
 - 8%
 - 9%
 - 10%

USD 30-year sovereign debt increases in value by 2.7%

Listed equity

- Change in valuation:
 - -1.5%
 - -3.1%

listed equity based on MSCI ACWI ETF

Source: Vivid Economics (Net-Zero Toolkit)
Impacts of the Inevitable Policy Response

Financial markets price in higher sovereign credit risk, while central banks cut rates in response to the FPS

Risk premia rise (first order effect)
- Lower growth and fiscal expansion leads to an increase in debt/GDP ratios and as a result higher default probability
- Markets reprice based risk premia on sovereign bonds rise

Interest rates fall (second order effect)
- Faced by a GDP output gap and increasing inflation, central banks chose to cut interest rates to stimulate growth
- This response is highly dependent on the response of monetary authorities, the FPS follows a classic Taylor rule

The curves represent spot rates i.e. the single discount rate at time (t) that is used to discount cash flows at time (t). Spot rate is equal to yield to maturity for zero-coupon bonds. Nominal rates for Saudi Arabia and the USA move in line to account for interest rate parity as the USDSAR peg is assumed to hold
Source: Vivid Economics (Net-Zero Toolkit)
In isolation, bond prices can fall significantly from rising debt/GDP as the sovereign default risk premia increases.

Australia: Fall in 30-year bond prices is modest as current debt levels are lower relative to Canada.

Canada: A sharp rise in debt levels, increases the already large debt/GDP ratio causing a significant fall in bond prices.

These impacts assume no monetary policy response by central banks (no change to nominal interest rates).

Source: Vivid Economics (Net-Zero Toolkit)
Impacts of the Inevitable Policy Response

However, combining risk premia and nominal interest rate changes into spot rates show that interest rate falls tend to dominate risk premia increases.

Risk premia rise

+ Interest rates fall

= Spot rate changes

The curves represent spot rates i.e. the single discount rate at time (t) that is used to discount cash flows at time (t). Spot rate is equal to yield to maturity for zero-coupon bonds.

Technical detail on spot rate calculation

‘Baseline’ spot rate are estimated using market data on sovereign bond yield curves:

- Current sovereign bond yield to maturities are converted into spot rates through bootstrapping (equating discounted cashflows based on spot rates and YTM)
- The change in spot rates under FPS and BAU spot rates are used to estimate FPS spot rates
- These spot rates are then used to value bonds under the FPS

Findings

- Spot curves are flatter (for most countries) as spot rates in longer dated tenors fall more
- Canada and Saudi’s spot curve is higher for shorter maturities and lower for longer maturities – as the change in default risk premia dominates nominal interest rate up to 2045.
- Australia’s spot curve is lower by ~30bps in the 30 year tenor driven by a large decrease in nominal interest rates.

Source: Vivid Economics (Net-Zero Toolkit)
Impacts of the Inevitable Policy Response

Combined impacts can be illustrated by 30-year US-treasury bonds for which increases in default premia are offset by lower interest rates

The US treasury spot curve flattens as markets price in the expected reduction in central bank interest rates under the FPS.

US-treasury spot curve

The curve above represents the spot curve and prices impacts are for debt maturing in 30 years time.

Bond price impacts assume debt is currently being traded at par and with a face value of 100. The translation from bond yield to price changes is non-linear and follows conventional bond pricing.

Source: Vivid Economics (Net-Zero Toolkit)
Impacts of the Inevitable Policy Response

Full valuation impacts vary significantly across countries and by maturity, with longer-dated bonds having larger impacts, but most bonds rally under FPS

“Fully” repriced sovereign bond impacts:
including risk premia and nominal interest rates (which are dependent on future central bank policy)

For bonds with tenors of 5 years or less, there is no impact as FPS scenario impacts materialise after 2025
Current (04/02/2020) yields are taken from Thomson Reuters
Source: Vivid Economics (Net-Zero Toolkit)
Impacts of the Inevitable Policy Response

Higher credit risk can drive bond value reductions, but this is only for a small subset of highly exposed and leveraged countries such as Canada.

Canadian 20-year zero coupon bonds fall in value as the decrease in real interest rates is cancelled out, largely by an increase in credit spread, due to a high starting level of debt/GDP.
Impacts of the Inevitable Policy Response

For most countries, including Australia, increases in credit risk are so small that they are offset by the fall in interest rates.

For bonds with tenors of 5 years or less, there is no impact as FPS scenario impacts materialise after 2025.

Current (04/02/2020) yields are taken from Thomson Reuters.

Source: Vivid Economics (Net-Zero Toolkit)

Australian 30-year zero coupon bonds rise in value as the decrease in real interest rates dominates the effect of inflation and credit risk (which is smaller due to a lower starting level of debt).

For bonds with tenors of 5 years or less, there is no impact as FPS scenario impacts materialise after 2025.

Current (04/02/2020) yields are taken from Thomson Reuters.

Source: Vivid Economics (Net-Zero Toolkit)
Sovereign debt impacts of the FPS are sensitive to assumptions around central bank response functions, and the relationship between debt-to-GDP and credit risk

- The macroeconomic analysis of the FPS assumes that central banks respond to changes in GDP and inflation based on the Taylor rule
- The effect of increasing debt-to-GDP on default risk premia is accounted for based on statistical relationships at the global-level
 ◊ The econometric specification accounts for different starting points of debt-to-GDP, and uses a non-linear specification to account for the increasing marginal impact of debt-to-GDP on default risk premia
 ◊ Sovereign credit risk is influenced by a range of other market and fundamental factors which are not accounted for in this analysis
 ◊ Sensitivity analysis was done using different econometric specifications, to assure for robustness of results
- The Appendix shows how the bond valuation impacts of the FPS can be decomposed by risk factor (real interest rates, inflation and credit risk)
- Under the FPS, interest rates do not change up to 2025, the year in which policy disruption begins – this means that all bonds with a maturity of 5-years or less are unaffected
- Vivid’s bond pricing methodology uses the change in 1-year forward credit spreads and nominal interest rates, to calculate the change in spot rates over time.
 ◊ Current (as of 4th February 2020) yield to maturities are obtained from Thompson Reuters which are converted to spot rates using a bootstrapping routine
 ◊ The curves illustrated in this deck are spot curves i.e. each point on the curve represents the spot rate for that tenor
- For Eurozone countries, macroeconomic impacts are modeled at the Eurozone-level, with relevant outputs then downscaled to the country-level
- Saudi Arabia’s pegged exchange rate regime against the US dollar is assumed to hold
Real estate results (Vivid Economics)
Key Findings: Real estate is almost as exposed as equities with impacts concentrated in commercial real estate and regions with high emissions intensity

The impairment for investable real estate is 2.5% of current value under the FPS - equivalent to $2.8 tn.

-2.5%

This is smaller than the expected 3.1% reduction in equity values.

The impacts above assume 100% of the cost burden is on property owners. The value impairment is much smaller at 0.3% if energy costs are passed through to tenants.

Risks are concentrated in commercial real estate, where energy use is higher per dollar invested leading to 7.5% global impact, relative to 1.1% in the residential sector.

Regions with low emissions efficiency and low property values are most impacted.

The impacts above assume 100% of the cost burden is on property owners. The value impairment is much smaller at 0.3% if energy costs are passed through to tenants.

Reduce exposure: Investors should reduce exposure to lower value properties with bad energy performance as these will require significant abatement investment which can undermine their value proposition.

Seek the opportunities: Developing or acquiring low-carbon real estate, especially in markets with currently high emissions intensity, is likely to offer higher returns as climate policy is implemented.
Property owners can take action to reduce the overall cost burden attributed to climate policy through energy efficiency investments and retrofitting.

Local carbon prices impose costs on all real estate assets consuming energy, with less energy efficient assets facing relatively higher costs.

Changes in value are calculated by discounting future costs (both increased energy expenditure and abatement cost) from existing buildings to arrive at a new market valuation.

The real estate model distributes the cost impact from carbon pricing between owners and tenants to estimate changes in property valuation.
The value of investable real estate falls by US$2.8 trillion under the FPS, 2.5% of its current value which is slightly less than the estimated impact on equities.

Real Estate

- Emission costs
- Abatement
- Total impact

<table>
<thead>
<tr>
<th>Change in valuation under FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4%</td>
</tr>
<tr>
<td>-3%</td>
</tr>
<tr>
<td>-2%</td>
</tr>
<tr>
<td>-1%</td>
</tr>
<tr>
<td>0%</td>
</tr>
</tbody>
</table>

- Abatement offsets 16% of emission costs
- Abatement includes retrofitting, fuel changes and behavioral changes

Equity

- Total impact

- Total value impairment is equivalent to $2.8 trillion

* the global share of investable property by value is 34% in the residential sector and 67% in the commercial sector. As a result, $114.5 trillion of the $254 trillion global real estate market is included in this analysis. Savills (2017): https://www.savills.co.uk/blog/article/216300/residential-property/how-much-is-the-world-worth.aspx

** equity results are based on the MSCI ACWI: https://www.msci.com/acwi
Impacts of the Inevitable Policy Response

Impacts are concentrated in commercial property, with high energy intensity to value increasing severity of regional impacts in both property classes.

- Low valuations and energy efficiency lead to large impacts in the ME & A.
- Commercial properties are impacted more due to higher emissions intensity.
- Residential properties have smaller impacts.

Note: property level impacts are not captured in IPR analysis due to data limitations, but are crucial for individual investment decisions.

Value impairment vs. Emissions intensity (tCO2 / US$ million)

- $10 billion
- $100 billion
- $500 billion

Regions:
- Europe
- Asia
- North America
- Middle East & Africa
- Central & Southern America
- Australia
- Commercial
- Residential
Increasing coverage and stringency of energy efficiency policies will lead to large-scale abatement activities

Under the FPS, mandatory energy efficiency measures lead to efficient levels of abatement in global real estate.

- In 2018, mandatory energy efficiency measures covered 32% of the global residential stock and 43% of the commercial building stock.

- These shares are expected to increase significantly to 2050, along with continued increases in policy stringency.

- These policies will drive building owners to implement widespread abatement activity despite the split incentives* in the rental sector.

Due to increasing emissions costs, properties with lower emission intensities will become increasingly attractive for tenants.

* Split incentives refer to the fact that benefits from energy efficiency measures don’t accrue solely to the implementor but are split amongst owners and tenants, leading to under-investment in rental properties.
As energy costs rise, differentiating factors will become increasingly important for individual investors. Factors which will affect property level impacts include:

- Physical characteristics: e.g. age, location, energy consumption by source, historic energy efficiency refurbishment expenditure*
- Sensitivity of demand to price changes (by building type)
- Building-level market value (current), discount rates used in current valuations

*Note: figures assume constant scope 2 emissions intensity – any reduction in scope 2 emissions intensity will reduce carbon costs.
*If none of the above: average CO₂ emissions (by building type)
Cost pass through to tenants has the potential to reduce value impairments but depend on the regulatory and market context

These results assume that owners face 100% of the cost burden. If some of these costs is passed on to tenants, value impairments will be reduced.

The figure illustrates the scenario where energy costs are passed through to tenants completely, with owners bearing only the abatement costs. In this case valuation impairment is 0.3%, down from 2.5% without pass through.*

The extent of cost pass through depends on factors such as:

1) **Cost incidence** – typically tenants bear energy costs, while owners face refurbishment costs. Deviations will affect where the initial burden is placed.

2) **Regulation (e.g. rent controls)** – regulation may prevent owners from passing on abatement costs to tenants.

3) **Market dynamics** - the presence of low-carbon buildings will reduce the ability of other buildings to increase their costs.

*Note this implies a cost-pass through of 86%, consistent with the sectoral average of equity results (85%).
Impacts of the Inevitable Policy Response

Key Findings: Large parts of global infrastructure is built for the high carbon economy and therefore exposed to the FPS

The iShares Global Infrastructure index falls by -11%, which is significantly larger than the impact to listed equity of -3.1%
Infrastructure assets are typically investor specific but broad exposure can be understood through proxy infrastructure equity indices

Infrastructure impacts are large as the asset class is more exposed to sectors that are significantly impacted from the FPS, for example Utilities (-14%) and Energy (-29%). However cleaner infrastructure assets provide potentially large opportunities for targeted investors.

Large potential benefits by tilting to cleaner infrastructure. There is also need for increased due diligence on existing holdings particularly within sectors that are exposed to the FPS, for example Energy.
Infrastructure, as proxied by the iShares Global Infrastructure Index, is significantly more exposed to Utilities and Energy than listed equity overall.

Infrastructure is an asset class that is owner specific there is limited data available. This analysis makes use of the iShares Global Infrastructure index, which tracks the performance of global listed infrastructure companies.

The Global Infrastructure index is significantly more exposed to utilities and the energy sectors than the MSCI ACWI equity index.

- **Infrastructure index**
 - 40% Utilities
 - 49% Energy
 - 11% Other*

- **Listed Equity**
 - 91% Utilities
 - 7% Energy
 - 3% Other*
Awareness of risks posed by emissions-intensive utilities and energy companies in infrastructure portfolios is key, as current portfolios may contain high exposure.

The Global Infrastructure index is down 11% under current valuation compared to the pre-policy scenario (FPS).

- **Utilities**: -12%
- **Energy**: -8%
- **Other**: -6%
- **Total impact**: -11%

Infrastructure based on the iShares Global Infrastructure UCITS ETF; Listed equity based on the iShares MSCI ACWI UCITS ETF. Other: includes roads, airports, rail, ports etc.
Investors who transition to low-carbon infrastructure such as renewable generation assts could turn downside into significant upside under the FPS

The big value reduction from power generators can be turned into upside if investors focus on low carbon generation technologies such as wind and solar

The rise of renewables under FPS

Infrastructure based on the iShares MSCI infrastructure index* listed equity based on MSCI ACWI ETF
Other: includes roads, airports, rail, ports etc.
Private Equity
Key Findings: Private equity is likely to capture more green upside through smaller cleantech companies

The impact to a proxy private equity portfolio based on a representative portfolio of small and mid-cap listed equities is -0.7% which is smaller than the impact to listed equity of -3.1%

Private equity assets are investor specific but broad exposure can be understood through the use of small and mid-caps as proxies.

Private equity impacts are relatively small at the asset class level. The asset class is more exposed to cleantech companies in the industrials sector (relative to MSCI ACWI), which shows modest gains these are cancelled out by losses in energy.

Large potential upside by investing in growing cleantech companies that have not matured to listed indexes that tend to contain more established firms.

Investors also need to be cautious of “dirty” energy firms in the sector which experience losses.
Private equity investment is disproportionately higher in industrial sectors which are more likely to benefit from cleantech growth, leading to a small overall impact.

As private equity is owner specific, there is limited data available.

This analysis constructs a private equity portfolio based on a representative portfolio of small and mid-cap listed equities, with firm size and sector exposure based on the average private equity holdings.

The private equity portfolio is more exposed to smaller cleantech companies in the industrials sector. Private equity is also more exposed to “cleaner” sectors for example consumer and business services (10%), relative to listed equity.
Private equity investors can turn risks into opportunity by focusing on growing cleantech companies that have not yet matured to listed indexes.

Private Equity
- **Industrial Manufacturing**: Includes electrical equipment and power systems which have upside potential (mean impact of +28%)
- **Consumer + Business Services**
- **Other**: Impact from other is driven by the energy sector

Equity
- Total impact: -0.7%
- Change in valuation under FPS: -3.1%

Notes: *PE portfolio based on a representative portfolio of listed equities, with firm size and sector exposure based on https://www.pwc.de/en/private-equity/private-equity-trend-report-2020.html
Other* includes Energy, Finance, Healthcare, Consumer non-cyclicals, Technology, Telecommunications, Utilities Equity** based on MSCI ACWI ETF
Strategic Asset Allocation (Vivid Economics)
Impacts of the Inevitable Policy Response

Strategic Asset Allocation: Investors can reduce exposure by focusing on safer bond investments

1) Sovereign Debt: USD 6-year (average tenor for USD debt), 2) Corporate Bonds based on bonds issued by companies within the iShares MSCI ACWI ETF, 3) Private Equity details on portfolio in PE slide, 4) Real Estate details on portfolio in Real estate section, 5) Equities based on the MSCI ACWI ETF, 6) Infrastructure is based on iShares MSCI Infrastructure index.

Source: Vivid Economics (Net-Zero Toolkit)
Strategic Asset Allocation: However, the big opportunities are by tilting portfolios towards greener options within asset classes – especially in green infrastructure.

Green* and high carbon* indices for Corporate Bonds, Private equity, Real Estate, Equities, and Infrastructure are constructed by applying sector weights to the 90th and 10th percentile of companies (in terms of valuation change in FPS). Sovereign debt Green / high carbon impacts are from 10Y debt from Canada and the Netherlands. Real Estate Green assumes carbon neutral building with no carbon costs, whereas high carbon is average buildings with no abatement.

Investors can turn downside to upside, without changing the sector composition, by switching from green* to high carbon* securities.
Appendix: sovereign bond price change from change in real interest rates
Appendix: sovereign bond price change from change in nominal interest rates
The sovereign bond methodology captures the dynamics of transition, by modelling changes in bond risk factors through changes in macroeconomic variables and policy.

- The Taylor rule in the macroeconomic model (G-Cubed) used in this analysis leads to lower interest rates as central banks optimise over lower output vs higher inflation, induced by carbon pricing policies.

- The diagram above depicts the *generic* impacts of the FPS on sovereign bond risk factors, but these vary by country.
 ◊ Current macroeconomic conditions and FPS impacts differ by country, therefore policy response (fiscal and monetary) differ by country as well.
Private equity is disproportionately in industrial sectors which are more likely to benefit from cleantech growth, leading to a positive impact overall.

Notes: *Listed equity weights are based on MSCI ACWI ETF. Sector level granularity is RBICS Level 1.